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Abstract

A novel approach to malware classification is introduced based on analysis of instruction
traces that are collected dynamically from the program in question. The method can be
applied on-line in a sandbox environment, and is intended for eventual host-based use,
provided the engineering hurdle of sampling the instructions executed by a given process
without disruption to the user can be satisfactorily addressed. The procedure represents
an instruction trace using a Markov Chain structure in which the transition matrix, P, has
rows modeled as Dirichlet vectors. The malware class (malicious or benign) is modeled
using logistic regression with variable selection on the elements of P, which are observed
with error. The utility of the method is illustrated on a sample of traces from malware and
non-malware programs, and the results are compared to other leading detection schemes
(both signature and classification based). Finally, a novel clustering approach is presented
based on a probabilistic change similarity measure. This approach is effective at identifying
previously examined malware which is similar to a newly identified instance, to aid in reverse
engineering.
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1 Introduction

Malware (short for malicious software) is a term used to describe a variety of forms of hostile,

intrusive, or annoying software or program code. It was recently estimated that one in four

computers operating in the US are infected with malware (Organisation for Economic Co-

operation and Development 2008). More than 286 million unique variants of malware were

detected in 2010 alone (Symantec 2011), and it is widely believed that the release rate of

malicious software is now far exceeding that of legitimate software applications (Symantec

2008). A large majority of the new malware is created through simple modifications to existing

malicious programs or by adding some code obfuscation techniques such as a packer (Royal,

Halpin, Dagon, Edmonds & Lee 2006). A packer compresses a program much the same way a

compressor like Pkzip does, then attaches its own decryption/loading stub which ’unpacks’ the

program before resuming execution normally at the program’s original entry point (OEP).
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Malicious software is growing at such a rate that commercial antivirus vendors (AV) are not

able to adequately keep up with new variants. In the recent study, AV Comparatives’ proactive

retrospective tests (Antivirus Comparatives 2011), detection was found to be substantially

less than the ideals touted by AV company product literature. There are two methods for

antivirus scanners to implement their technology. The first is via a static signature scanning

method, which uses a sequence of known bytes in a program and tests for the existence. The

second is using generic or heuristic detection technologies. These heuristics are what we seek to

specifically improve upon in this paper. Unfortunately, even though most of the new malware

is very similar to known malware, it will often not be detected by signature-based antivirus

programs (Christodorescu & Jha 2003, Perdisci, Dagon, Fogla & Sharif 2006), until the malware

signature eventually works its way into the database, which can take weeks or even longer. AV

Comparatives’ retrospective tests demonstrate the effectiveness of the AV industry’s accuracy

at finding previously unknown threats. The AV software is updated on a predetermined date

T1. At a future date T2, a month later, the AV software is then used to scan threats that have

appeared after T1. The test removes the ability to develop static signatures, and provides a

good test of the heuristic defenses of the AV software. The highest detection rate among the

12 AV programs considered in the study is 67%, although this AV software also had what was

described as a large number (25) false alarms (the false detection rate, however, is unknown as

the number of benign programs used in the study is not reported).

Because of the signature based susceptibility to new malware, classification procedures based

on statistical and machine learning techniques have been employed with varied success, to make

a decision about the integrity of an unknown program. These methods have generally revolved

around n-gram analysis of the static binary or dynamic trace of the malicious program (Reddy &

Pujari 2006, Reddy, Dash & Pujari 2006, Stolfo, Wang & Li 2007, Dai, Guha & Lee 2009). These

methods have shown great promise in detecting zero-day malware, but there are drawbacks

related to these approaches. The two parameters generally associated with n-gram models are

n, the length of the subsequences being analyzed, and L, the number of n-grams to analyze.

For larger values of n and L, there is a much more expressive feature space that should be able

to discriminate between malware and benign software more easily. But with these larger values

of n and L, one runs into the curse of dimensionality: the feature space becomes too large and

there is not have enough data to sufficiently condition the model. With smaller values of n and

L, the feature space is too small and discriminatory power is lost.

The data sources used to classify programs include binary files (Kolter & Maloof 2006, Reddy

et al. 2006, Stolfo, Wang & Li 2005), binary disassembled files (Bilar 2007, Shankarapani,

Ramamoorthy, Movva & Mukkamala 2010), dynamic system call traces (Bayer, Moser, Kruegel
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& Kirda 2006, Hofmeyr, Forrest & Somayaji 1998, Rieck, Trinius, Willems & Holz 2011), and

most recently dynamic instruction traces (Anderson, Quist, Neil, Storlie & Lane 2011, Dai

et al. 2009). Although some success has been achieved by using disassembled files, this cannot

always be done, particularly if the program uses an unknown packer, and therefore this approach

has similar shortcomings to the signature based methods.

Here a similar path is taken to that in Anderson et al. (2011) where they use the dynamic

trace from many samples of malware and benign programs to train a classifier. A dynamic

trace is a record of the sequence of instructions executed by the program as it is actually

running. Dynamic traces can provide much more information about the true functionality of

a program than the static binary, since the instructions appear in exactly the order in which

they are executed during operation. The drawback to dynamic traces is that the are difficult

to collect for two reasons: (i) the program must be run in a safe environment which is more

time consuming than processing a static binary file, and (ii) malware often has self-protection

mechanisms designed to guard against being watched by a dynamic trace collection tool, and

care must be taken to ensure the program is running as it would under normal circumstances.

Here a modified version of the Ether Malware Analysis framework (Dinaburg, Royal, Sharif

& Lee 2008) was used to perform the data collection. Ether is a set of extensions on top of the

Xen virtual machine. Ether uses a tactic of zero modification to be able to track and analyze a

running system. Zero modifications preserves the sterility of the infected system, and limits the

methods that malware authors can use to detect if their malware is being analyzed. Increasing

the complexity of detection makes for a much more robust analysis system.

Collecting dynamic traces can be slow due to all of the built in functionality of Ether to

safeguard against a process altering its behavior while being watched. It is an engineering

hurdle to develop a software/hardware solution that would be efficient enough to collect traces

on a host without disruption to the user. This problem is being investigated, however, the

current implementation is sufficient for a sandbox type on-line application (Goldberg, Wagner,

Thomas & Brewer 1996). For example, many institutions implement an email/http inspection

system to filter for spam and malware. Inserting the proposed methodology into this process

allows for a more robust approach to analyzing new threats in real time.

The three main goals of this work are then to (i) classify malware with high accuracy for

a fixed false discovery rate (e.g., 0.001), (ii) provide an online classification scheme that can

determine when enough trace data has been collected to make a decision, and (iii) cluster the

suspected malware instance with other known malware samples to stream-line the reverse engi-

neering process. Reverse engineering is the process of determining the program’s functionality

in an effort to better understand the nature and source of the malicious intrusion.
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In order to accomplish (i) we propose a logistic regression framework using penalized splines.

Estimation of the large number of model parameters is performed with a Relaxed Adaptive

Elastic Net procedure, which is a combination of ideas from the Relaxed LASSO (Meinshausen

2007), Adaptive LASSO (Zou 2006), and the Elastic Net (Zou & Hastie 2005). To accomplish

(ii) we allow the regression model to have measurement error in the predictors in order to

account for the uncertainty in a dynamic trace with a small number of instructions. Lastly

(iii) can be accomplished through a novel probability change measure, where the “distance” is

based on how much change occurs in the probabilistic surface when moving from one program

to another in covariate space. Initial results indicate the potential for vast improvement in

detection ability of the proposed method over signature based methods. Further, the proposed

clustering strategy makes reverse engineering much more efficient as demonstrated in Section 5.

The rest of the paper is laid out as follows. Section 2 describes the dynamic trace data and

how it will be used in the regression model. In Section 3 the underlying classification model

and estimation methodology are presented. The classification results on five minute dynamic

traces are presented in Section 4. Finally an illustration of how the method could be applied

in practice in an online classification and clustering analysis is provided in Section 5. Section 6

concludes the paper.

2 Dynamic Trace Data

As mentioned previously, a modified version of the Ether Malware Analysis framework (Dinaburg

et al. 2008) was used to collect the dynamic trace data. A dynamic trace is the sequence of

processor instructions called during the execution of a program. This is in contrast to a dis-

assembled binary static trace which is the order of instructions as they appear in the binary

file. The dynamic trace is believed to be a better measure of the program’s behavior since

code packers obfuscate functionality from analysis of static traces. Also, the instructions in

a dynamic trace are listed in the order that they were actually executed, as opposed to the

order they appear in the binary (and many of the instructions that appear in the static trace

may never even be executed). There are other data that can be incorporated too (e.g., packer

present?, system calls, file name and location, ...). The framework laid out in Section 3 allows

for as many data sources or features that one may wish to include.

The point in the dynamic trace where the packer finishes executing instructions is called

the original entry point (OEP). At this point in the trace the program will begin to execute

instructions related to the actual functionality of the program. Intuitively, it would seem

beneficial to remove the portion of the dynamic trace related to the packer. Two data sources

are considered (with and without packer instructions, along with a binary predictor to indicate
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the presence of packer or not) in the results of Section 4.

In order to make efficient use of the dynamic trace, it is helpful to think of the instruction

sequence as a Markov chain. This representation of the sequence has been shown to have

better explanatory power than related n-gram methods (Anderson et al. 2011). To this end,

the instruction sequence is converted into a transition matrix Z where

Zjk = number of direct transitions from instruction j to instruction k.

Estimated transition probabilities P̂ are obtained from counts Z, where

Pjk = Pr{next instruction is k | current instruction is j}.

The elements of P̂ are then used as predictors to classify malicious behavior. This entire

procedure is described in more detail in Section 3. The Zjk are 2-grams, while the estimated

Pjk are essentially a scaled version of the 2-grams, i.e., the relative frequency of going from

statej to state k given that the process is now in state j. These quantities (Zjk and Pjk) are

usually substantially different in this case, since not all states are visited with similar frequencies.

Anderson et al. (2011) used the elements of an estimated Pjk from dynamic traces (with the

state space consisting of Intel instructions observed in the sample) as features in a support

vector machine. They found that using the elements of Pjk provided far better classification

results for malware than using 2-grams (or n-grams in general). This is likely due to the fact

that sometimes informative transitions j → k may occur from a state j that is rarely visited

overall, but when it is visited, it tends to produce the j → k transition prominently. Such

situations will be measured very differently with Pjk versus Zjk.

There are hundreds of commonly used instructions in the Intel instruction set, and thousands

of distinct instructions overall. A several thousand by several thousand matrix of transitions,

resulting in millions of predictors would make estimation difficult. Additionally, many instruc-

tions perform the same or similar tasks (e.g., ’add’ and ’subtract’). Grouping such instructions

together in a reasonable way not only produces a faster method but provides better explanatory

power vs. using all distinct Intel instructions in our experience.

Through collaboration with code writers familiar with assembly language, we have developed

four categorizations of the Intel instructions, ranging from course groupings to more fine.

• Categorization 1 (8 classes → 64 predictors):

math, logic, priv, branch, memory, stack, nop, other

• Categorization 2 (56 classes → 3136 predictors):

asc, add, and, priv, bit, call, math other, movc, cmp, dcl, . . .

• Categorization 3 (86 classes → 7396 predictors):

Python Library “pydasm” categories for Intel instructions
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• Categorization 4 (122 classes → 14884 predictors):

pydasm categories for instructions with rep instruction-x given its own class distinct

from instruction-x.

Figure 1 displays a conceptualization of the Markov Chain Transition Probability Represen-

tation of a Dynamic Instruction Trace. The graph on the right has eight nodes corresponding to

the eight categories of Categorization 1, where the edges correspond to transition probabilities

from one instruction category to the next for the given program. The location each instruction

acted on in memory is not used in this analysis, since these locations are not consistent from

one execution of the program to another.

The data set used contains dynamic traces from 543 malicious and 339 benign programs,

respectively, for a total of 882 observations. The benign sample was obtained from a malware

vendor’s clean data set, and includes Microsoft Office programs, popular games, etc. The

malicious sample was obtained via a random sample of programs from the website

http://www.offensivecomputing.net/, which is a repository that collects malware instances

in conjunction with several institutions. There is a noticeable lack of public sources of malware

and malware analysis available. Other malware samples that were available were either for sale

or limited to a small number of users. Malware samples are acquired by the Offensive Computing

Website through user contributions, capture via mwcollectors and other honey pots, discovery

on compromised systems, and sharing with various institutions. Admittedly, this is not a truly

random sample from the population of all malicious programs that a given network may see,

but it is the largest publicly available malware collection on the Internet (Quist 2012).

Figure 1: Markov chain transition probability representation of a dynamic instruction trace: (left) the
first several lines from a dynamic trace output (i.e., instruction and location acted on in memory, which
is not used), (right) a conceptual conversion of the instruction sequence into Categorization 1 transition
probabilities.

Instr Address
lea ecx, [ecx]

sub esp, 0x3C

sub esp, 0x3C

mov ebx, eax

mov ebp, esp

add ebx, 0x00410F1F

lea eax, [ebp+]

mov [esp+0x14], ecx

sub eax, ecx

mov [ebp+], edi

sub edx, esi

or edi, 0x0040A24E

xchg [ebp+], esi
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Each of the observations was obtained from a 5 minute run of the program. Originally there

were 543 malicious and 473 benign programs, but any program with less than 2000 instructions

executed during the five minutes was removed from the data set. The rationale behind this

was that some benign processes remain fairly idle, waiting for user interaction. Since such

programs produce very short traces and are not representative of the kind of programs that

require scanning, it was decided to remove them from the training set. The dataset used in this

analysis (dynamic trace files obtained with Ether) is available upon request.

As a first pass at visualizing the data and to get a feeling for how well the malicious samples

separate out from the benign samples, a dimension reduction normal mixture model (Hastie &

Tibshirani 1996) was fit to the logit of the transition probabilities resulting from Categorization

2. For this analysis, the estimated transition probabilities P̂ i for the i-th observation were taken

to be the posterior mean (i.e., P̂ i = E(P i | Zi)), assuming symmetric Dirichlet(0.1) for each

row of P i. More details on the estimation of P i are provided in Section 3. Logistic regression

with the elastic net (Zou & Hastie 2005), was first used to screen for active predictors among the

56×56 = 3136 candidate predictors. The R package mda was then used to fit the normal mixture

model with two components on K linear combinations of the remaining active predictors. The

number of linear combinations (dimensions) and their coefficients are estimated along with the

mixture parameters as described in (Hastie & Tibshirani 1996). Figure 2 displays a plot of the

benign and malicious samples (in blue and red, respectively) on the reduced dimension axes for

the resulting three dimensions.

The accuracy numbers reported in Figure 2 are obtained via 10-fold cross validation (CV)

of the normal component mixture model. This accuracy (∼ 92% overall) gives a baseline

Figure 2: Normal Component Mixture Data Visualization and Classification: 56 × 56 = 3136 predic-
tors for categorization 2, projected to three dimensions that support good cross-validated classification
accuracy.
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performance metric with which to compare to the procedure described in Section 3.

3 A Statistical Model for Malware Classification

Elements of P̂ were used as predictors, similar to the approach used for data visualization

in Section 2. Two Main Goals for the classification model are to (i) Screen out most predic-

tors to improve performance and allow certain transitions to demonstrate their importance to

classification, and (ii) explicitly account for uncertainty in P̂ for online classification purposes

because this uncertainty will have a large impact on the decision until a sufficiently long trace

is obtained. While (ii) is not as necessary for offline analysis, it can still can be useful in a

framework to decide how long to run a program (i.e., how long of a trace is needed in order to

make a decision?).

3.1 Logistic Spline Regression Model

For a given categorization (from the four categorizations given in Section 2) with c instruction

categories, letZi be the transition counts between instruction categories for the i-th observation.

Let Bi be the indicator of maliciousness, i.e., Bi = 1 if i-th sample is malicious, and Bi = 0

otherwise. For the initial model fit discussion in this section, take P̂ i to be the posterior mean

(i.e., E(P i | Zi)), assuming symmetric Dirichlet(λ) for each row of P i. In this analysis λ = 0.1

was used. In Section 5 a simple approach is described to account for the uncertainty inherent in

P i when making decisions. The assumption is that the training set has observations where the

traces are long enough to make the uncertainty in the precise value of P i somewhat negligible

for the purposes of model estimation. This can be verified intuitively through the results of

Section 5.1, where probability estimates become fairly precise after about 10,000 instructions.

The actual predictors used to model the Bi are

xi =
[
logit(P̂i,1,1), logit(P̂i,1,2), . . . , logit(P̂i,c,c−1), logit(P̂i,c,c)

]′
, i = 1, . . . , n, (1)

where P̂i,j,k is the (j, k)-th entry of the P̂ i matrix, and each component of the xi is scaled to have

sample mean 0 and sample variance 1, across i = 1, . . . , n. The scaling of the predictors to a

comparable range is a standard practice for penalized regression methods (Tibshirani 1996, Zou

& Hastie 2005). We then use the model

logit[Pr(B = 1)] = fβ(x) = β0 +

c2∑
s=1

K+1∑
l=1

βs,lφs,l(xs), (2)

where the basis functions φs,1, . . . φs,K+1 form a linear spline with K knots at equally spaced
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quantiles of xs, s = 1, . . . , c2 (and c2 is the number of elements in the P̂ matrix).

Pairwise products of the φs,l(x) can also be included to create a two-way interaction spline

for f(x). A compromise which is more flexible than the additive model in (2), but not as

cumbersome as the full two-way interaction spline is to include multiplicative interaction terms

into the additive model, i.e.,

logit[Pr(B = 1)] = fβ(x) = β0 +
c2∑
s=1

K+1∑
l=1

βs,s,lφs,s,k(xs) +
c2−1∑
s=1

c2∑
t=s+1

K+1∑
l=1

βs,t,lφs,t,l(xsxt), (3)

where φs,t,1, . . . φs,t,K+1 form a linear spline with K knots at equally spaced quantiles of xsxt

for s 6= t (and at equally spaced quantiles of xs for s = t). The model in (3) with K = 5

is ultimately the route taken as it produced the best classification results on the problem at

hand. This model has potentially a very large number of parameters (β s) in this application,

so some efficient sparse estimation procedure is necessary in order to estimate all parameters.

This procedure is described next in Section 3.2.

3.2 Relaxed Adaptive Elastic Net Estimation

In order to estimate the large number of parameters in (3), a combination of the Elastic Net

(Zou & Hastie 2005), Relaxed LASSO (Meinshausen 2007), and Adaptive LASSO (Zou 2006)

procedures was used. The Elastic Net is efficient and useful for extremely high dimensional

predictor problems p >> n. This is in part because it can ignore many unimportant predictors

(i.e., it sets many of the βs,t,l ≡ 0). The Elastic Net, Relaxed LASSO, and Adaptive LASSO

procedures, are reviewed below, then generalized for use in this application.

The data likelihood is

L(β) =
n∏
i=1

[
logit−1(fβ(xi))

]IBi=1
[
1− logit−1(fβ(xi))

]IBi=0

The Elastic Net estimator is a combination of ridge regression and LASSO (Tibshirani 1996),

i.e., the β that minimizes

logL(β) + λ

ρ
c2∑
s=1

c2∑
t=s

K+1∑
l=1

β2s,t,l + (1− ρ)

c2∑
s=1

c2∑
t=s

K+1∑
l=1

|βs,t,l|

 , (4)

for given tuning parameters λ > 0 and ρ ∈ [0, 1] which are typically chosen via m-fold CV.

For the linear spline model of (3), the penalty on β 2
s,t,l and |βs,t,l| corresponds to a penalty on

the overall trend and the change in slope at the knots (i.e., encourages “smoothness”). The

parameters λ and ρ are tuning parameters typically chosen via 10-fold CV, for example. Another
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benefit to the Elastic Net is that fits for many values of λ are obtained at the computational

cost of a single least squares fit (i.e., O(p2)) via the Least Angle Regression (LARS) algorithm

(Efron, Hastie, Johnstone & Tibshirani 2004).

The Relaxed Lasso and Adaptive LASSO both emerged as procedures developed to counter-

act the over-shrinking that occurs to the nonzero coefficients when using the LASSO procedure

in high dimensions. The Relaxed LASSO can be thought of as a two-stage procedure, where the

LASSO procedure (i.e., the Elastic Net estimator with ρ = 0) is applied with λ = λ1, then the

LASSO is applied again to only the nonzero coefficients with λ = λ2, where typically λ1 > λ2.

The Adaptive LASSO is also a two stage procedure where an initial estimate of βs,t,l is

obtained via unregularized MLEs or via ridge regression (if p > n). In the second step, the

LASSO is applied with a penalty that has each term weighted by the reciprocal of the initial

estimates, β̃s,t,l.

This motivates the following three step approach taken to estimate the coefficients of the

logistic spline model in (3).

Algorithm 1: Estimation Procedure.

Step 1: Screen predictors xs for importance using a linear logistic model

f1(x) = α0 +
∑
s

αsxs,

with α estimated via Elastic net in (4) with λ = λ1 and ρ = .5.

Step 2: Use active predictors (i.e., those xs with αs 6= 0) to fit the interaction spline model of

(3) via the Elastic Net with λ = λ2 and ρ = .5. Denote, the estimated coefficients from

Step 2 as β̃s,t,l

Step 3: fit the interaction spline model of (3) via the Adaptive Elastic Net with λ = λ3 and

ρ = ρ3. That is, β̂ is given by the minimizer of

logL(β) + λ3

ρ3
c2∑
s=1

c2∑
t=s

K+1∑
l=1

(
βs,t,l

β̃s,t,l

)2

+ (1− ρ3)
c2∑
s=1

c2∑
t=s

K+1∑
l=1

∣∣∣∣∣βs,t,lβ̃s,t,l

∣∣∣∣∣
 . (5)

The tuning parameters λ1, λ2, λ3, and ρ3 need to be chosen via cross validation. On the

surface it may seem overkill to combine these three concepts, but the extremely high dimension-

ality of the model in (3) demands this aggressive approach. There are over 9 million parameters

if using Categorization 2, over 200 million predictors if using Categorization 4. The initial out-

of-sample classification results using just one of these procedures alone were far inferior to those

10



obtained with combined approach. For example, overall 10-fold CV classification rates of ∼96%

were achieved with the Elastic Net, Adaptive LASSO, and Relaxed LASSO, respectively, when

used alone to fit the model in (3). Whereas overall 10-fold CV accuracies achieved using the

combined method above are ∼99%, as shown in Section 4.

3.3 Prior Correction for Sample Bias

Prior correction (Manski & Lerman 1977, Prentice & Pyke 1979) involves computing the usual

logistic regression fit and correcting the estimates based on prior information about the propor-

tion of malware in the population of interest π1 and the observed proportion of malware in the

sample (or sampling probability), B̄. Knowledge of π1 can come from some prior knowledge,

such as expert solicitation or previous data. King & Zeng (2001) point out, provided the esti-

mates of the regression coefficients (i.e., βs,t,l, j < k, l = 1, . . . ,M in (5)) are consistent, then

the following corrected estimate is consistent for β0,

β̃0 = β̂0 − log

[(
1− π1
π1

)(
B̄

1− B̄

)]
. (6)

Prior correction will have no effect on classification accuracy results discussed in Section 4,

since it is just a monotonic transformation, so there will be an equivalent threshold to produce

the same classifications either way. However, it can be useful in practice to have the estimated

probability of maliciousness for a given program provide a measure of belief of the malicious-

ness of the program on a scale that reflects the appropriate prior probability that the code is

malicious. That is, if π1 can somehow be specified for the given network on which the program

will be executed, then prior correction in (6) can be useful.

4 Classification Results

Let P̂r(B = 1 | x) be given by (3) with βs,t,l replaced by their respective estimates β̂s,t,l. The

ith observation is classified as malicious if P̂r(B = 1 | xi) > τ for some threshold τ which can

be selected to produce an acceptable false discovery rate (FDR).

4.1 Out of Sample Accuracy

The classification accuracy of the proposed method is first examined on the various categoriza-

tions, with and without the packer removed. If the packer was removed from the trace, then

a binary predictor (packer existence or not) was added to the covariate vector x. The 10-fold

CV overall accuracy results for these covariate scenarios are provided in Table 1. Overall, there

is very little difference between the results with or without packer removed, with possibly the

exception of Categorization 2 results. It seems that the effect of the packer (which produces
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Table 1: Overall out-of-sample accuracy calculated via 10-fold CV by category and packer (removed on
not) using logistic spline regression with Relaxed Adaptive Elastic Net estimation. The standard error
of the respective accuracy estimates are provided in parentheses.

Cat 1 Cat 2 Cat 3 Cat 4

w/packer 0.923 (0.009) 0.986 (0.004) 0.991 (0.003) 0.991 (0.003)

w/o packer 0.923 (0.009) 0.993 (0.003) 0.989 (0.004) 0.992 (0.003)

relatively few instructions relative to the remainder of the program) is washed out by the rest

of the instructions. However, this could have more of an impact for shorter traces, particularly

when collecting traces and analyzing traces early on in real time such as in Section 5. Cate-

gorizations 2, 3, and 4 are generally not much different from each other, but they all perform

far better than Categorization 1. In the remainder of the results the Categorization 2 data

with packer removed is used, since it provides the most parsimonious model among the best

performing covariate sets.

The logistic spline regression with Relaxed Adaptive Elastic Net estimation is compared to

various other methods using categorization 2 with packer removed in Table 2. The competing

methods are (i) linear logistic regression estimated with Elastic Net (i.e., step 1 of Algorithm

1), (ii) a support vector machine provided by the Python package shogun, (iii) the mixture

discriminant analysis (MDA) routine of Hastie & Tibshirani (1996) (using the R package mda)

using two components on the set of covariates with nonzero coefficients from the linear logistic

Table 2: Comparison of classification results using various methods. The logistic spline, logistic linear,
SVM, and MDA methods use Categorization 2 with packer removed covariates, and had results calculated
via 10-fold CV (same 10 folds were used for each method).

Overall Malware Accuracy

Detection Method Accuracy 1% FDR1 0.3% FDR2 ∼0% FDR3

Spline Logistic (Cat 2) 0.993 0.989 0.858

Linear Logistic (Cat 2) 0.930 0.564 0.328

SVM (Cat 2) 0.932 0.862 0.558

MDA (Cat 2) 0.920 0.538 0.394

Antivirus 1 0.733 0.632

Antivirus 2 0.537 0.363

Antivirus 3 0.496 0.259

1 three out of 339 benign programs incorrectly considered malicious
2 one out of 339 benign programs incorrectly considered malicious
3 There are some false positives from signature-based detection methods due to fuzzy matching

heuristics (Antivirus 1 had one false detection in this dataset for example), but the exact FDR
for these signature-based methods is unknown.
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regression elastic net, and (iv) three leading signature based antivirus programs with all of their

most recent updates. The predictor screening used in conjunction with the MDA method is

essential in this case in order to avoid the numerical issues with the procedure that occurred

when using all predictors. The number of mixture components (two) was chosen to produce

the best 10-fold CV accuracy. The names of the leading antivirus programs are not provided

due to legal concerns. It is important to recognize that these AV software packages are using

signatures (i.e., blacklists) and whitelists as well as heuristics to determine if a program is

malicious. The other classification methods in the table are not using signatures or white lists,

but these could easily be incorporated into these methods in practice which would only improve

upon their performance. Even still, the Spline Logistic method performs extremely well on this

data set, and could possibly be a promising addition to AV software.

Figure 3: ROC Curves for the methods in Table 2
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Figure 3 displays the ROC curves for the

various competing methods in Table 2. The

antivirus programs are excluded since there is

no thresholding parameter with which to vary

the false positive rate. It is clear from Table 2

and Figure 3 that the spline logistic model

with Relaxed Adaptive Elastic Net estimation

is far superior to the other methods for this

classification problem. In particular, it has an

estimated out-of-sample overall error rate of

0.007 (accuracy of 99.3%) which is 10 times

smaller than any of the other methods.

5 Online Analysis of Programs
5.1 Online Detection

The predictors used in the logit spline model of Section 3 are the elements of the probability

transition matrix P , which can only be observed (i.e., estimated) with error. This measurement

error can be substantial for a dynamic trace with only a small number of instructions. For online

classification, it is essential to account for this measurement error. Of particular importance is

determining how long of an instruction trace is needed before making a decision.

To tackle this issue, the rows of P are further modeled as independent symmetric Dirichlet(λ)

vectors a priori, which is a conjugate prior for P in a Markov chain model. Thus, for a trace

T1:m with m instructions observed thus far, the probability of being Malicious, Pr(B = 1) =

logit−1
(
f̂(P )

)
, has inherent variability (due to the uncertainty in P ) that decreases as m in-
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creases (i.e., as a longer instruction trace is obtained). If a given process produces a trace T1:m,

the distribution of Pr(B = 1) can be simulated by generating draws from the posterior of P to

produce uncertainty bands and a posterior mean estimate E[Pr(B = 1) | T1:m].

This can be thought of as an empirical Bayes approach, as f is replaced with an estimate

f̂ , while only the uncertainty in P is treated. This is a good compromise, as the uncertainty

in Pr(B = 1) is dominated by uncertainty in P early on in the trace. Figure 4 demonstrates

this approach on the first malicious and benign processes in the sample, respectively, using

a prior correction of π1 = 0.01. There is a lot of uncertainty in either case initially, until

about 10,000 instructions are collected. By about 30,000 instructions the Pr(B = 1) for the

malicious and benign processes are tightly distributed near one and zero respectively. A possible

implementation for online decision making could be to classify as malicious (or benign) according

to Pr(B = 1) > τ (for some threshold τ that admits a tolerable number of alarms per day)

once the 95% credible interval is narrow enough (e.g., < 0.1).

Figure 4: Posterior mean of the probability of malware given the instruction sequence for a malicious
sample (a) and benign sample (b), respectively, as a function of number of instructions (95% credible
intervals reflecting uncertainty in red)
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(a) Dynamic trace from a malicious program
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(b) Dynamic trace from a benign program

5.2 Post Detection Analysis

Once a file is suspected to be malicious, it is often necessary to reverse engineer (RE) the

program to determine its functionality and origin in order to know how to respond and/or

how to better prevent future infections into the computer network. The reverse engineering

process is fairly sophisticated, requiring many hours of effort from a highly trained individual.

Thus, our goal is to streamline this process by providing useful information about the program.

To this end, we describe a novel method to cluster the malicious files. When a new malware

instance is detected, it can be clustered into a self-similar group, where perhaps some of the
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group members have already been reverse engineered by an analyst. The analyst can then use

these previous efforts to more quickly understand the nature and functionality, origin, etc. of

the newly suspected malicious program.

There are many clustering approaches in the literature, including hierarchical distance based

(Ward 1963, Johnson & Wichern 2007), K-means (MacQueen 1967), Spectral Methods (von

Luxburg 2007), and model based procedures (Celeux & Govaert 1995, Hastie & Tibshirani 1996,

Fraley & Raftery 2002, Teh, Jordan, Beal & Blei 2006, Hjort, Holmes, Műller & Walker 2010)

(see Everitt, Landau & Leese (2001) and Johnson & Wichern (2007) for a review of clustering

methods). Here we introduce a similarity measure which takes advantage of the estimated

probability P̂r(B = 1 | x) of being malicious. This similarity measure can then be used in

a hierarchical clustering procedure to develop clusters and thus identify neighbors for a given

instance of malware.

Figure 5: A conceptual probability surface over the
predictor space. The Euclidean distance (or Ma-
halonobis distance if the two predictor dimensions
had the same variance) from x1 to x2 is the same as
that from x1 to x3. However, the line integral in (7)
along the respective dashed lines will be very dif-
ferent, leading to a much larger probability change
measure in (7) for (x1,x3), than that for (x1,x2).

The predictor space in this problem is

of very high dimension (3136 predictors for

Categorization 2), making direct application

of model based clustering methods infeasible.

However, as in most problems with high di-

mensional predictor space, there are relatively

few important predictors to the total number.

Also, predictors vary substantially in their in-

fluence. We postulate that if two observa-

tions are very close together with respect to

their values of all of the “important” predic-

tors (i.e., those predictors that can inform mal-

ware or benign), then they should be consid-

ered “neighbors”, regardless of their respective

values of the other (less informative) predic-

tors. Since the spline logistic model estimation procedure described in Section 3 contains the

pertinent information about predictor importance and is useful for classification in this setting,

it makes intuitive sense to use this model to define a measure of similarity between observations.

In particular, we define a similarity measure operating on predictor variable space which

measures the accumulated change in probability of malware when moving in a straight line from

one point (x1) in predictor variable space to another (x2) as depicted in Figure 5. This similarity

measure will be much smaller for observations that have little change in the probability surface

between them (e.g., x1 and x2), than for observations with much change (e.g., x1 and x3), even
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Figure 6: Cluster dendrogram of malware processes using the probability change similarity measure. A
horizontal red line is drawn at a cutpoint determined by the fifth percentile of the pairwise distances.
The cluster belonging to the malware observation in Figure 4(a) is outlined in red and consists of 19
members.
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if there is no difference in Euclidean (or Mahalanobis) distances.

More specifically, the accumulated probability change along the length of the line connecting

points x1 and x2 in Euclidean space can be represented as the line integral

d(x1,x2) = ‖x1 − x2‖
{∫ 1

0

∣∣∣∣ ∂∂λ P̂r
(
B = 1

∣∣∣ x = λx1 + (1− λ)x2

)∣∣∣∣ρ dλ}1/ρ

, (7)

where ‖x1 − x2‖ is the standard Euclidean norm. In the analysis presented below ρ = 1 is

used. The probability change in (7) can be efficiently calculated with a simple quadrature

approximation across λ on the consecutive differences of P̂r(B = 1 | x = λx1 + (1− λ)x2).

Figure 6 shows the dendrogram resulting from using Ward’s hierarchical clustering method

with the similarity measure in (7) to cluster the 543 malicious observations. For reference a

horizontal red line is drawn at a cutpoint determined by the fifth percentile of the pairwise

distances. In practice, a program will be classified as malicious (such as that in Figure 4(a)),

and what is then needed are a few of it’s closest neighbors that have been reverse engineered

previously to aid in the reverse engineering of the newly suspected malicious program. However,

it is possible that the suspected malware has no close neighbors. The fifth percentile of the

distances can be used as a rule of thumb to decide if the neighboring observations are close

enough to be potentially useful to the analyst. According to this cutpoint, the cluster belonging

to the first malware observation in Figure 4(a) is outlined in red and consists of 19 members.

A dynamic trace can be visualized with the Visualization of Executables for Reversing and
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Analysis (VERA) software (Quist & Liebrock 2009) in a manner that aids in the reverse en-

gineering process. VERA begins by generating traces logging the address of each instruction.

These addresses are then used to form the vertices of the graph. Any observed transition from

one address to another generates an edge between the two vertices. Multiple executions of

the same transitions between addresses will result in a darker line, indicating a loop. The

resulting graph is then arranged with the Open Graph Display Framework Fast Multipole

Layout Algorithm (Quist & Liebrock 2009), which generates the graphs seen in Figure 7. Fig-

ures 7(a) and 7(b) provide VERA graphs of the suspected malicious program from Figure 4

and its nearest neighbor according to the probability change measure, respectively. An analyst

can then observe the graphs and make out structures in them. Similar programs, as denoted

in Figure 7, will result in similar graph features.

The blue rectangle in the upper right hand corner of both graphs in Figure 7 is the starting

address of execution. The instructions proceeding from the upper-right to lower-left are the

initialization areas of the loop. Windows executables have initialization code, or preamble,

appended to each program. This is referred to as the ”initterm” by the Windows compilers.

After the initterm code executes, two spheres can be observed in the graph. In the case of the

two samples tested, the colocation across two samples is indicative of a common feature set.

Moving into cluster of address in the bottom part of the program one can see other similarities

between the two samples. Specifically loops and switch statements are similarly located in

the graphs. The two graphs are not exactly similar due a generational difference, verified by

manual reverse engineering, between the two samples. Given that both samples possess the

same execution features, the two samples both share a similar code base and thus are related.

6 Conclusions and Further Work

Flexible classification must be done cautiously with so many predictors. The Relaxed Adaptive

Elastic Net is a good framework for adding flexibility with splines. It avoids over-fitting to

obtain superior accuracy relative to other popular approaches for classifying new programs. It

is also possible to use a model based classification approach that treats the dynamic trace as

a Markov Chain directly, and assumes a mixture of Dirichlet distributions for the rows of the

transition matrix P . This framework would also cluster malware samples as it detects them,

and is a subject of further work. Also, (Anderson, Quist, Brown, Storlie & Lane 2012) use

additional features (e.g., static trace, file entropy, system calls) to perform classification. The

approach discussed here would easily allow for these additional features along with the Ether

traces used here for future use.

The current framework allows for online application in a sandbox at the perimeter of a net-
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Figure 7: Functionality plots of the dynamic trace obtained with the VERA software of the suspected
malware observation in Figure 4(a) and its nearest neighbor according to the probability change measure.

(a) VERA trace plot of the the suspected malware ob-
servation in Figure 4(a)

(b) VERA trace plot of the closest neighbor to the the
suspected malware observation in Figure 4(a)

work. Implementation of the classification procedure in this manner is currently being pursued

for LANL’s network. The classification procedure runs very quickly on a given trace (once the

model is estimated which can be done offline). The largest obstacle to producing a host-based

software (i.e., running the classification procedure on an actual user’s machine as it runs the

applications) is the collection of dynamic traces in real time efficiently without disruption to

the user. The feasibility of such a collection procedure is currently being investigated. Another

issue with host based implementation is that users produce instructions traces for benign pro-

grams that rely on user interaction, and are thus different from traces produced if the program

is left alone. Care must be taken to collect a representative sample of the traces that will be

observed on a user’s system. Finally, it would be a beneficial extension of this work to incorpo-

rate change point detection in order to allow for instances where a benign process is “hijacked”

by a malicious program (Cova, Kruegel & Vigna 2010).
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Hjort, N., Holmes, C., Műller, P. & Walker, S. (2010), Bayesian Nonparametrics, Cambridge,
UK: Cambridge University Press.

19



Hofmeyr, S. A., Forrest, S. & Somayaji, A. (1998), ‘Intrusion Detection Using Sequences of
System Calls’, Journal of Computer Security 6(3), 151–180.

Johnson, R. & Wichern, D. (2007), Applied Multivariate Statistical Analysis, 6th edn, Upper
Saddle River, NJ: Pearson Prentice Hall.

King, G. & Zeng, L. (2001), ‘Logistic regression in rare events data’, Political Analysis 9(2), 137–
163.

Kolter, J. Z. & Maloof, M. A. (2006), ‘Learning to Detect and Classify Malicious Executables
in the Wild’, The Journal of Machine Learning Research 7, 2721–2744.

MacQueen, J. (1967), ‘Some methods for classification and analysis of multivariate observa-
tions’, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Prob-
ability 1, 281–297.

Manski, C. & Lerman, S. (1977), ‘The estimation of choice probabilities from choice based
samples’, Econometrica 45, 1977–1988.

Meinshausen, N. (2007), ‘Relaxed lasso’, Computational Statistics and Data Analysis 52(1), 374
– 393.

Organisation for Economic Co-operation and Development (2008), ‘Malicious software (mal-
ware): A security threat to the internet economy’, White Paper.
URL: http://www.oecd.org/dataoecd/53/34/40724457.pdf

Perdisci, R., Dagon, D., Fogla, P. & Sharif, M. (2006), Misleading Worm Signature Generators
Using Deliberate Noise Injection, in ‘In Proceedings of the 2006 IEEE Symposium on
Security and Privacy’, pp. 17–31.

Prentice, R. & Pyke, R. (1979), ‘Logistic disease incidence models and case-control studies’,
Biometrika 66, 403–411.

Quist, D. (2012), ‘Community malicious code research and analysis’.
URL: http://www.offensivecomputing.net/

Quist, D. & Liebrock, L. (2009), Visualizing compiled executables for malware analysis, in
‘Proceedings of the 6th International Workshop on Visualization for Cyber Security (VizSec
2009)’, VizSec, pp. 27–32.

Reddy, D. K. S., Dash, S. & Pujari, A. (2006), New Malicious Code Detection Using Variable
Length n-grams, in ‘Information Systems Security’, Vol. 4332 of Lecture Notes in Computer
Science, Springer Berlin / Heidelberg, pp. 276–288.

Reddy, D. & Pujari, A. (2006), ‘N-gram analysis for computer virus detection’, Journal in
Computer Virology 2, 231–239.

Rieck, K., Trinius, P., Willems, C. & Holz, T. (2011), ‘Automatic Analysis of Malware Behavior
Using Machine Learning’, Journal of Computer Security 19(4), 639–668.

Royal, P., Halpin, M., Dagon, D., Edmonds, R. & Lee, W. (2006), Polyunpack: Automating
the hidden-code extraction of unpackexecuting malware, in ‘ACSAC’, pp. 289–300.

20



Shankarapani, M., Ramamoorthy, S., Movva, R. & Mukkamala, S. (2010), ‘Malware Detection
Using Assembly and API Call Sequences’, Journal in Computer Virology 7(2), 1–13.

Stolfo, S. J., Wang, K. & Li, W.-J. (2005), Fileprint Analysis for Malware Detection, in ‘ACM
Workshop on Recurring/Rapid Malcode’.

Stolfo, S., Wang, K. & Li, W.-J. (2007), Towards Stealthy Malware Detection, in ‘Malware
Detection’, Vol. 27 of Advances in Information Security, Springer US, pp. 231–249.

Symantec (2008), ‘Internet Security Threat Report, trends for julydecember 2007 (executive
summary)’, White Paper.
URL: http://eval.symantec.com/mktginfo/enterprise/white papers/b-
whitepaper exec summary internet security threat report xiii 04-2008.en-us.pdf

Symantec (2011), ‘Internet Security Threat Report, Volume 16’, White Paper.
URL: http://www.symantec.com/business/threatreport/index.jsp

Teh, Y. W., Jordan, M. I., Beal, M. J. & Blei, D. M. (2006), ‘Hierarchical dirichlet processes’,
Journal of the American Statistical Association 101.

Tibshirani, R. (1996), ‘Regression shrinkage and selection via the lasso’, Journal of the Royal
Statistical Society B 58, 267–288.

von Luxburg, U. (2007), ‘A Tutorial on Spectral Clustering’, Statistics and Computing 17, 395–
416. 10.1007/s11222-007-9033-z.
URL: http://dx.doi.org/10.1007/s11222-007-9033-z

Ward, J. H. (1963), ‘Hierarchical grouping to optimize an objective function’, Journal of the
American Statistical Association 58(301), 236–244.

Zou, H. (2006), ‘The adaptive lasso and its oracle properties’, Journal of the American Statistical
Association 101, 1418–1429.

Zou, H. & Hastie, T. (2005), ‘Regularization and variable selection via the elastic net’, Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 67(2), 301–320.

21


